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Abstract

Purpose – This paper aims to apply He’s homotopy perturbation method (HPM) to obtain solitary
solutions for the nonlinear dispersive equations with fractional time derivatives.
Design/methodology/approach – The authors choose as an example the nonlinear dispersive and
equations with fractional time derivatives to illustrate the validity and the advantages of the
proposed method.
Findings – The paper extends the application of the HPM to obtain analytic and approximate
solutions to the nonlinear dispersive equations with fractional time derivatives.
Originality/value – This paper extends the HPM to the equation with fractional time derivative.
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1. Introduction
The study of solitary solutions of nonlinear equations in mathematical physics plays an
important role in soliton theory. Because, nonlinear wave phenomena arise in a wide range
of physical and engineering applications such as fluid mechanics, hydrodynamics, solid
state physics plasma physics, optical fibers etc. These phenomena are frequently related
to wave and dispersive equations. Therefore, explicit solutions to such equations are of
primary importance and there is a strong attention to explicit soliton solutions and these
solutions may provide much physical information to help researchers to understand the
characteristics of the mechanism of the physical models. Fractional differential equations
have been caught much attention recently due to exact description of nonlinear
phenomena. No analytical method was available before 1998 for such equations even for
linear fractional differential equations. In 1998, the variational iteration method was first
proposed to solve fractional differential equations with greatest success (He, 1998). Many
authors found variational iteration method (VIM) is an effective way to solving fractional
equations both linear and nonlinear (Odibat and Momani, 2006; Das, 2008). Momani and
Odibat (2007) and Ganji et al. (2008) applied the homotopy perturbation method (HPM) to
fractional differential equations and revealed that the HPM is an alternative analytical
method for fractional differential equations. Momani et al. (2008) and Odibat and Momani
(2008) compared solution procedure between VIM and HPM.

In this paper we consider the following nonlinear dispersive Kðm; n; 1Þ equation
with fractional time derivatives:

D�
t uþ ðumÞx � ðunÞxxx þ u5x ¼ 0: ð1Þ
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The classic nonlinear dispersive Kðm; nÞ equation first introduced by Rosenau and
Hymann (1993) and for certain values of m and n, Kðm; nÞ equation has solitary waves
which are compactly supported. Recently, large number of methods were suggested to
study the nonlinear dispersive Kðm; nÞ equations, such as Adomian method (Wazwaz,
2002, 2003, 2004; Zhu et al., 2007), Exp-function method (He and Wu, 2006a), variational
iteration method (He and Wu, 2006b; Wazwaz, 2007; Tian and Yin, 2007), variational
method (He, 2006a, b) and HPM (He, 2005a, b; Odibat, 2007). There are also many
effective and convenient methods for solving these type equations (Inç, 2006; Zhu and Lu,
2006; Zhu and Gao, 2006; Tian and Yin, 2005). Equation (1) with fractional order of time
derivation happens in discontinuous time in large time scale in weather forecast or the
very small time scale in high energy physics. Time is discontinuous according to the
E-infinity theory (but Hierarchical), and the fractional model is the best candidate to
describe such problems. Time-fractional equations always behave fascinatingly as
illustrated (He, 2008c).

Recently, Odibat (2007) has successfully utilized the HPM to construct solitary
solutions for nonlinear dispersive Kðm; nÞ equation with fractional time derivatives. In
this paper, we would like to extend the HPM to the Kðm; n; 1Þ equation with fractional
time derivative given in Equation (1) above.

The objective of this paper is to extend the application of the HPM to obtain analytic
and approximate solutions to the nonlinear dispersive Kðm; n; 1Þ equations with
fractional time derivatives. The HPM was first proposed by the Chinese mathematician Ji-
Huan He (He, 1999, 2000a, b, 2006c). The essential idea of this method is to introduce a
homotopy parameter, say p, which takes values from 0 to 1. When p ¼ 0, the system of
equations usually reduces to a sufficiently simplied form, which normally admits a rather
simple solution. As p gradually increases to 1, the system goes through a sequence of
deformations, the solution for each of which is close to that at the previous stage of
deformation. Eventually at p ¼ 1, the system takes the original form of the equation and
the final stage of deformation gives the desired solution. One of the most remarkable
features of the HPM is that usually just few perturbation terms are sufficient for obtaining
a reasonably accurate solution. Considerable research works have been conducted recently
in applying this method to a class of linear and nonlinear equations (Özi�s and Yıldırım,
2007a, b, c, d; Yıldırım and Özi�s, 2007; Yıldırım, 2008a, b, c, d; Dehghan and Shakeri, 2007,
2008; Shakeri and Dehghan, 2007, 2008; Saadatmandi et al., 2009). The interested reader
can see the references (He, 2008a, b, 2006d, e) for last development of HPM.

2. Fractional calculus
We give some basic definitions and properties of the fractional calculus theory which
are used further in this paper.

Definition 2.1
A real function f ðxÞ; x > 0; is said to be in the space C�; � 2 R if there exists a real
number pð> �Þ, such that f ðxÞ ¼ xpf1ðxÞ; where f1ðxÞ 2 C½0;1Þ; and it is said to be in
the space Cm

� if and only if f ðmÞ 2 C�;m 2 N :

Definition 2.2
The Riemann-Liouville fractional integral operator of order � � 0; of a function
f 2 C�; � � �1 ; is defined as

J�f ðxÞ ¼ 1

�ð�Þ

ðx

0

ðx� tÞ��1f ðtÞdt; � > 0; x > 0; J 0f ðxÞ ¼ f ðxÞ:
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Properties of the operator J� can be found in references (Miller and Ross, 1993; Samko
et al., 1993; Oldham and Spanier, 1974), we mention only the following. For
f 2 C�; � � �1 ; �; � � 0 and � > �1:

(1) J�J�f ðxÞ ¼ J�þ�f ðxÞ;
(2) J�J�f ðxÞ ¼ J�J�f ðxÞ;
(3) J�x� ¼ �ð� þ 1Þ=�ð�þ � þ 1Þx�þ�:

The Riemann-Liouville derivative has certain disadvantages when trying to model real
world phenomena with fractional differential equations. Therefore, we shall introduce a
modified fractional differential operator D� proposed by Caputo in his work on the
theory of viscoelasticity (Luchko and Gorneflo, 1998).

Definition 2.3
The fractional derivative f ðxÞ in the Caputo sense is defined as:

D�f ðxÞ ¼ Jm��Dmf ðxÞ ¼ 1

�ðm� �Þ

ðx

0

ðx� tÞm���1f ðmÞðtÞdt; ð2Þ

for m� 1 < � � m; m 2 N ; x > 0; f 2 Cm
�1:

Also, we need here two of its basic properties.

Lemma 2.3.1 If m� 1 < � � m; m 2 N and f 2 Cm
� ; � � �1; then,

D�J�f ðxÞ ¼ f ðxÞ;

and,
J�D�f ðxÞ ¼ f ðxÞ �

Xm�1

k¼0

f ðkÞð0þÞ x
k

k!
; x > 0:

The Caputo fractional derivatives are considered here because it allows traditional
initial and boundary conditions to be included in the formulation of the problem. In this
paper, we consider the nonlinear dispersive Kðm; n; 1Þ equations with fractional time
derivatives, and the fractional derivatives are taken in Caputo sense as follows.

Definition 2.4
For m to be the smallest integer that exceeds �, the Caputo time-fractional derivative
operator of order � > 0 is defined as

D�
t uðx; tÞ ¼ @

�uðx; tÞ
@t�

¼

1

�ðm� �Þ

ðt

0

ðt � �Þm���1 @
muðx; �Þ
@tm

d�; for m� 1 < � < m

@muðx; tÞ
@tm

; for � ¼ m 2 N

8>><
>>:

ð3Þ

For more information on the mathematical properties of fractional derivatives and
integrals one can consult the mentioned references.

3. The fractional K (m, n, 1) equations
In this section, solitary solutions for two special cases of the nonlinear dispersive
Kðm; n; 1Þ equations with fractional time derivatives are obtained by HPM.
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Example 3.1
The fractional K(2, 2, 1) equation

We first consider the fractional K(2, 2, 1) equation with initial condition:

D�
t uþ ðu2Þx � ðu2Þxxx þ u5x ¼ 0; t > 0 ð4Þ

uðx; 0Þ ¼ 16c� 1

12
cosh2 x

4

� �
; ð5Þ

where 0 < � � 1 and c is an arbitrary constant. We construct the following homotopy:

D�
t u� pf�ðu2Þx þ ðu2Þxxx � u5xg ¼ 0; p 2 ½0; 1� ð6Þ

u0ðx; 0Þ ¼
16c� 1

12
cosh2 x

4

� �
; ð7Þ

Assume the solution of Equation (6) to be in the form:

u ¼ u0 þ pu1 þ p2u2 þ p3u3 þ :::::: ð8Þ

Substituting (8) into (6) and equating the coefficients of like powers of p, we get
following set of differential equations

p0 : D�
t u0 ¼ 0; u0ðx; 0Þ ¼

16c� 1

12
cosh2 x

4

� �

p1 : D�
t u1 ¼ �ðu2

0Þx þ ðu2
0Þxxx � ðu0Þ5x; u1ðx; 0Þ ¼ 0

p2 : D�
t u2 ¼ �ð2u0u1Þx þ ð2u0u1Þxxx � ðu1Þ5x; u2ðx; 0Þ ¼ 0

p3 : D�
t u3 ¼ �ð2u2u0 þ u2

1Þx þ ð2u2u0 þ u2
1Þxxx � ðu2Þ5x; u3ðx; 0Þ ¼ 0

. . .

ð9Þ

Solving the above equations, we obtain

u0 ¼
16c� 1

24
cosh

x

2

� �
þ 1

� �
;

u1 ¼ �
ð16c� 1Þc

24:2
sinh

x

2

� � t�

�ð�þ 1Þ ;

u2 ¼
ð16c� 1Þc2

24:22
cosh

x

2

� � t2�

�ð2�þ 1Þ ;

u3 ¼ �
ð16c� 1Þc3

24:23
sinh

x

2

� � t3�

�ð3�þ 1Þ ;

. . .

ð10Þ

and so on, in the same manner the rest of components can be obtained using Maple.
Consequently, we have the first five terms (Figure 1) for solution of Equations (4) and (5)
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in a series form:

uðx; tÞ ¼ 16c� 1

24
cosh

x

2

� �
1þ c2

22

t2�

�ð2�þ 1Þ þ
c4

24

t4�

�ð4�þ 1Þ þ � � �
� �

þ 1

� �

� 16c� 1

24
sinh

x

2

� � c

2

t�

�ð�þ 1Þ þ
c3

23

t3�

�ð3�þ 1Þ þ � � �
� �� � ð11Þ

Figure 1.
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The solitary patterns solution in a closed form of Equations (4) and (5) is given by:

uðx; tÞ ¼ 16c� 1

24
cosh

x

2

� �
cosh

ct�

2
; �

� �
� sinh

x

2

� �
sinh

ct�

2
; �

� �
þ 1

� �
; ð12Þ

where the functions coshðz; �Þ and sinhðz; �Þ are defined as:

coshðz; �Þ ¼
X1
n¼0

z2n

�ð2n�þ 1Þ; sinhðz; �Þ ¼
X1
n¼0

z2nþ1

�ðð2nþ 1Þ�þ 1Þ

If we select the initial approximation u0ðx; 0Þ ¼ �ðð16c� 1Þ=12Þ sinh2ðx=4Þ; using the
HPM, we get the solitary patterns soliton,

uðx; tÞ ¼ � 16c� 1

24
cosh

x

2

� �
cosh

ct�

2
; �

� �
� sinh

x

2

� �
sinh

ct�

2
; �

� �
� 1

� �
ð13Þ

It is interesting to point out that for the case of � ¼ 1, we have coshðz; �Þ ¼ coshðzÞ
and sinhðz; �Þ ¼ sinhðzÞ. Therefore, the solitary patterns solutions reduce to:

uðx; tÞ ¼ 16c� 1

12
cosh2 ct � x

4

� �
ð14Þ

and,

uðx; tÞ ¼ � 16c� 1

12
sinh2 ct � x

4

� �
ð15Þ

which coincide with the Adomian decomposition method solution obtained by Zhu et al.
(2007).

Example 3.2
The fractional K(3, 3, 1) equation
We first consider the fractional K(3, 3, 1) equation with initial condition:

D�
t uþ ðu3Þx � ðu3Þxxx þ u5x ¼ 0; t > 0 ð16Þ

uðx; 0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
81c� 1

54

r
cosh

x

3

� �
; ð17Þ

where 0 < � � 1 and c is an arbitrary constant. We construct the homotopy which
satisfies the relation,

D�
t u� pf�ðu3Þx þ ðu3Þxxx � u5xg ¼ 0; p 2 ½0; 1� ð18Þ

u0ðx; 0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
81c� 1

54

r
cosh

x

3

� �
: ð19Þ
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Substituting (8) into (16) and equating the coefficients of like powers of p, we get
following set of differential equations:

p0 : D�
t u0 ¼ 0; uðx;0Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
81c� 1

54

r
cosh

x

3

� �
;

p1 : D�
t u1 ¼�ðu3

0Þxþ ðu3
0Þxxx � ðu0Þ5x; u1ðx;0Þ ¼ 0;

p2 : D�
t u2 ¼�ð3u2

0u1Þxþ ð3u2
0u1Þxxx � ðu1Þ5x; u2ðx;0Þ ¼ 0;

p3 : D�
t u3 ¼�ð3u2u2

0 þ 3u0u2
1Þxþ ð3u2u2

0þ 3u0u2
1Þxxx � ðu2Þ5x; u3ðx;0Þ ¼ 0;

. . .

ð20Þ

Solving the above equations, we obtain:

u0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
81c� 1

54

r
cosh

x

3

� �
;

u1 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
81c� 1

54

r
c

3
sinh

x

3

� � t�

�ð�þ 1Þ ;

u2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
81c� 1

54

r
c2

32
cosh

x

3

� � t2�

�ð2�þ 1Þ ;

u3 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
81c� 1

54

r
c3

33
sinh

x

3

� � t3�

�ð3�þ 1Þ ;

. . .

ð21Þ

and so on, in the same manner the rest of components can be obtained using Maple.
Consequently, we have the first five terms (Figure 2) for solution of Equations (16) and
(17) in a series form,

uðx; tÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
81c� 1

54

r
cosh

x

3

� �
1þ c2

32

t2�

�ð2�þ 1Þ þ
c4

34

t4�

�ð4�þ 1Þ þ � � �
� �� �

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
81c� 1

54

r
sinh

x

3

� � c

3

t�

�ð�þ 1Þ þ
c3

33

t3�

�ð3�þ 1Þ þ � � �
� �� � : ð22Þ

Solitary patterns solution in a closed form of Equations (16) and (17) is given by:

uðx; tÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
81c� 1

54

r
cosh

x

3

� �
cosh

ct�

3
; �

� �
� sinh

x

3

� �
sinh

ct�

3
; �

� �� �
; ð23Þ

where the functions coshðz; �Þ and sinhðz; �Þ are defined as:

coshðz; �Þ ¼
X1
n¼0

z2n

�ð2n�þ 1Þ; sinhðz; �Þ ¼
X1
n¼0

z2nþ1

�ðð2nþ 1Þ�þ 1Þ :
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If we select the initial approximation u0ðx; 0Þ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð81c� 1Þ=54

p
cosh x=3ð Þ; using the

HPM, we get the solitary patterns soliton

uðx; tÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
81c� 1

54

r
cosh

x

3

� �
cosh

ct�

3
; �

� �
� sinh

x

3

� �
sinh

ct�

3
; �

� �� �
ð24Þ

Figure 2.
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It is interesting to point out that for the case of � ¼ 1, we have coshðz; �Þ ¼ coshðzÞ
and sinhðz; �Þ ¼ sinhðzÞ. Therefore, the solitary patterns solutions reduce to:

uðx; tÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
81c� 1

54

r
cosh

ct � x

3

� �
ð25Þ

and

uðx; tÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
81c� 1

54

r
cosh

ct � x

3

� �
ð26Þ

which coincide with the Adomian decomposition method solution obtained by Zhu et al.
(2007).

4. Conclusion
In this paper, by using HPM, we successfully constructed solitary solutions for
nonlinear dispersive Kðm; n; 1Þ equations with fractional time derivatives. When the
fractional time derivative of order, �, (0 < � � 1) is taken as special values, our
solution reduces to some known solutions in the literature. The paper shows that HPM
can easily be utilized to construct solitary solutions for a broad class of nonlinear
problems with fractional time derivatives.
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